Solving PDEs on Manifolds with Global Conformal Parametriazation
نویسندگان
چکیده
In this paper, we propose a method to solve PDEs on surfaces with arbitrary topologies by using the global conformal parametrization. The main idea of this method is to map the surface conformally to 2D rectangular areas and then transform the PDE on the 3D surface into a modified PDE on the 2D parameter domain. Consequently, we can solve the PDE on the parameter domain by using some well-known numerical schemes on R. To do this, we have to define a new set of differential operators on the manifold such that they are coordinates invariant. Since the Jacobian of the conformal mapping is simply a multiplication of the conformal factor, the modified PDE on the parameter domain will be very simple and easy to solve. In our experiments, we demonstrated our idea by solving the Navier-Stoke’s equation on the surface. We also applied our method to some image processing problems such as segmentation, image denoising and image inpainting on the surfaces.
منابع مشابه
Conformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملSpaces of Conformal Vector Fields on Pseudo-riemannian Manifolds
We study Riemannian or pseudo-Riemannian manifolds which carry the space of closed conformal vector fields of at least 2-dimension. Subject to the condition that at each point the set of closed conformal vector fields spans a non-degenerate subspace of the tangent space at the point, we prove a global and a local classification theorems for such manifolds.
متن کاملA Cylindrical Radial Basis Function for Solving Partial Differential Equations on Manifolds
The numerical solution of partial differential equations on arbitrary manifolds continues to generate a lot of interest among scientists in the natural and applied sciences. Herein we develop a simple and efficient method for solving PDEs on manifolds represented as point clouds. By projecting the radial vector of standard RBF kernels onto the local tangent plane, we are able to produce RBF rep...
متن کاملSolve Partial Differential Equations on Manifold From Incomplete Inter-Point Distance
Solutions of partial differential equations (PDEs) on manifolds have provided important applications in different fields in science and engineering. Existing methods are majorly based on discretization of manifolds as implicit functions, triangle meshes, or point clouds, where the manifold structure is approximated by either zero level set of an implicit function or a set of points. In many app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005